

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5. Issue 5. May 2016

Personalized Web Service Recommendation Based on User's Location and User's History

Ekta K. Chainani¹, Prof. Rajeshri R. Shelke²

Student (M.E), Dept of Computer Science and Engineering, HVPM's College of Engineering and Technology,

Sant Gadge Baba Amravati University, Amravati, Maharashtra, India¹

Associate Professor, Dept of Computer Science and Engineering, HVPM's College of Engineering and Technology,

Sant Gadge Baba Amravati University, Amravati, Maharashtra, India²

Abstract: Collaborative Filtering (CF) is widely employed for making Web service recommendation. CF-based Web service recommendation aims to predict missing QoS (Quality-of-Service) values of Web services. Although several CF-based Web service QoS prediction methods have been proposed in recent years, the performance still needs significant improvement. Firstly, existing QoS prediction methods seldom consider personalized influence of users and services when measuring the similarity between users and between services. Secondly, Web service QoS factors, such as response time and throughput, usually depends on the locations of Web services and users. However, existing Web service QoS prediction methods seldom took this observation into consideration. In this paper, we propose a locationaware personalized CF method for Web service recommendation. The proposed method leverages both locations of users and Web services when selecting similar neighbors for the target user or service. The method also includes an enhanced similarity measurement for users and Web services, by taking into account the personalized influence of them. To evaluate the performance of our proposed method, we conduct a set of comprehensive experiments using a real-world Web service dataset. The experimental results indicate that our approach improves the QoS prediction accuracy and computational efficiency significantly, compared to previous CF-based methods.

Keywords: Web services, service recommendation, QoS prediction, collaborative filtering, location-aware.

I. INTRODUCTION

A. Web Services

Web services (sometimes called application services) are collaboration among multiple agents, viewpoints, data services (usually including some combination of programming and data, but possibly including human typically involve very large data sets. Collaborative resources as well) that are made available from a business's Web server for Web users or other Webconnected programs. A Web service is a service offered by an electronic device to another electronic device, communicating with each other via the World Wide Web [12]. In a web service, web technology such as the HTTP, originally designed for human-to-machine communication, is utilized for machine-to-machine communication, more specifically for transferring machine readable file formats such as XML and JSON. In practice, the web service typically provides an object-oriented web based interface to a database server, utilized for example by another web server, or by a mobile application, that provides a user interface to the end user. Another common application offered to the end user may be a mash up, where a web server consumes several web services at different machines, and compiles the content into one user interface.

B. Collaborative Filtering

Collaborative filtering (CF) is a technique used by some recommender systems. [1] Collaborative filtering has two senses, a narrow one and a more general one.[2] In general, collaborative filtering is the process of filtering

Copyright to IJARCCE

for information or patterns using techniques involving sources, etc.[2] Applications of collaborative filtering filtering methods have been applied to many different kinds of data including: sensing and monitoring data, such as in mineral exploration, environmental sensing over large areas or multiple sensors; financial data, such as financial service institutions that integrate many financial sources; or in electronic commerce and web applications where the focus is on user data, etc. The remainder of this discussion focuses on collaborative filtering for user data, although some of the methods and approaches may apply to the other major applications as well.

C. Recommender System

Recommender systems or recommendation systems (sometimes replacing "system" with a synonym such as platform or engine) are a subclass of information filtering system that seek to predict the 'rating' or 'preference' that a user would give to an item.[1][2] Recommender systems have become extremely common in recent years, and are applied in a variety of applications. The most popular ones are probably movies, music, news, books, research articles, search queries, social tags, and products in general. However, there are also recommender systems for experts, [3] [4] collaborators, [5] jokes, restaurants, financial services, [6] life insurance, persons (online

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 5, May 2016

dating), and Twitter followers.[7] Recommender systems recommendation performance (Zheng and Lyu 2013). For typically produce a list of recommendations in one of two example, after the user u invoked two Web services si and ways – through collaborative or content-based filtering.[8] si, the observed OoS values about response time (in Collaborative filtering approaches building a model from a user's past behavior (items previously purchased or selected and/or numerical ratings given to those items) as well as similar decisions made by other users. This model is then used to predict items (or ratings for items) that the user may have an interest in.[9] Content-based filtering approaches utilize a series of discrete characteristics of an item in order to recommend additional items with similar properties.[10] These approaches are often combined (see Hybrid Recommender Systems).

II. LITERATURE REVIEW

As the number of Web services available on the Internet 1997), and they proposed a greedy algorithm that was able increases quickly, service consumers pay more attention to to find a good approximation of the optimal ranking. Then, QoS instead of functionality than before. QoS mainly the related techniques and methods were introduced to the consists of non-functional attributes such as response time, field of recommender systems. For example, to address the throughput, availability, etc. It has been widely used in item ranking problem, Liu et al. (Liu and Yang 2008) service selection (Wang, Wang et al. 2013), service composition (Feng, Ngan et al. 2013), service recommendation, and the experimental result showed that recommendation (Cao, Wu et al. 2013; Jiang, Liu et al. 2011) and other popular topics in the field of Services Computing. In this section, we present the related work of QoS-aware Web service recommendation

A. Rating-Oriented Services Recommender

The rating-oriented CF recommender is undoubtedly one recommendation based on users' access logs. Inspired by of the most widely used approaches in the field of the topic models, Liu et al. (Liu, Chen et al. 2011) recommender systems, aiming at achieving better proposed an item-oriented model-based CF framework by prediction accuracy of the missing QoS values for user interest expansion via personalized ranking, which different service requestors. In general, it has two broad could address the problems of traditional CF approaches categories; memory-based and model-based approaches, such as overspecialization and cold-start. According to The memory-based CF approaches focus mainly on the matrix similarity between users or items and can be classified as (Balakrishnan and Chopra 2012) proposed a novel model user-based approach (Breese, Heckerman et al. 1998; Jin, that learned the features associated with the users and Chai et al. 2004), item-based approach (Deshpande, items for a ranking task, aiming at approximately Karypis et al. 2004; Sarwar, Karypis et al. 2001) and optimizing NDCG for a given recommendation task. For hybrid approach (Zheng, Ma et al. 2009; Zheng, Ma et al. more details of the ranking-oriented techniques for 2011). In 2007, Shao et al. introduced CF into Web service recommendation and proposed a classic user-based CF (Adomavicius and Kwon 2012). approach (Shao, Zhang et al. 2007).

Unlike simple and effective memory-based CF approaches, the model-based CF approaches introduce service recommendation based on QoS ranking prediction data mining, machine learning techniques to find patterns or train a prediction model based on training data. This Zheng and Lyu 2013) proposed a QoS-aware services type of approaches mainly includes clustering models ranking prediction framework based on the work (Xue, Lin et al. 2005), LFMs (Mnih and Salakhutdinov mentioned above, and the superiority of the proposed 2007), Bayesian networks (Singla and Richardson 2008), methods to other related CF approaches was validated by etc. Among these approaches, LFMs may be the most the comprehensive experiments on real-world QoS data. widely used one for Web service recommendation recently.

B. Ranking-Oriented Services Recommender

The rating-oriented CF approaches attempt to predict the user. This is typically done based on how closely this item vacant values in a given user-item matrix as accurately as is related to the user's tastes. Basically, proximity { the possible, but in some real-world application scenarios, measure of closeness { lies at the heart of CF. The accurate rating predictions do not definitely lead to better challenge of applying CF to UGCs translates into

seconds) are 0.4 and 0.5, respectively. Suppose that the OoS ratings of si and si (denoted by {qi, qi}) predicted by the recommendation models under discussion M1 and M2 are $\{0.3, 0.6\}$ and $\{0.5, 0.45\}$, respectively, it is clear that M2 is better than M1 in terms of root mean square error (RMSE). Therefore, the system will recommend sj to the users similar to u according to the model M2, which is obviously improper in practice since si has a higher rank than sj with respect to response time.

Thus, the ranking-oriented recommender systems are more suitable for these application scenarios or requirements. The earlier study on the problem of learning how to order was conducted by Cohen et al. (Cohen, Schapire et al. proposed a ranking-based CF approach to movies their method outperformed traditional CF approaches significantly in terms of NDCG (Normalized Discounted Cumulative Gain). Yang et al. (Yang, Wei et al. 2009) also proposed a ranking-oriented CF method to solve the problem of the lack of user ratings, and their method achieved satisfactory effects digital on books factorization models, Balakrishnan et al. recommendation. please refer to the literature

In the field of Services Computing, as far as we know, only a few of researchers attempted to conduct Web recently. For example, Zheng et al (Zheng, Wu et al. 2013;

C. A Link Prediction Approach to Collaborative Filtering

The fundamental task of collaborative filtering (CF) is to predict the interestingness and relevance of an item to a

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 5, May 2016

developing methods for calculating proximity that are both Step 1: Login to the System effective and scalable for large user-item spaces.

The hypothesis that the methods based on Link Prediction algorithms [11] provide an effective and scalable solution for CF in UGCs. Like CF, the underlying rationale of most Link Prediction algorithms is based on proximity. The Link Prediction problem is to predict the formation of links in a social network graph, and the corresponding solutions explore the principle that the closer two nodes are in such a graph, the higher the chance a link between them forms. Unlike classical CF techniques, however, some of the Link Prediction algorithms have been shown [16] to be highly scalable, performing well in massive and sparse social network graphs such as those of YouTube, Flicker, Digg, and Live Journal.

III. PROBLEM ANALYSIS

Different from the existing methods, which suffer from low prediction accuracy, we implement an effective CF algorithm for web service recommendation with the consideration of the region factor. We implement a location-aware QoS based Web services recommendation approach, in which we gain the OoS information and give personalized results to the user's. We use the process of filtering the results obtained from collaborative filtering (CF) technique based on the user's location information which significantly improves the recommendation accuracy by predicting and recommending potential This section presents the screenshots of the Personalized favorite items for a user.

A key problem of collaborative filtering is how to combine and weight the preferences of user neighbours. Sometimes, users can immediately rate the recommended items. As a result, the system gains an increasingly accurate representation of user preferences over time. CF techniques can be generally decomposed into two categories: model-based and memory-based. Memorybased CF is also named neighbourhood-based CF. Depending on whether user neighbourhood or item neighbourhood is considered; neighbourhood-based CF can further be classified into user-based and item-based .In user-based CF, a subset of appropriate users is chosen as neighbours based on their similarities to the active user. Then, a weighted aggregate of their ratings is used to generate predictions for the target user. In item-based CF, a subset of appropriate items is chosen as neighbours based on their similarities to the tar-get item. Then, a weighted aggregate of the target user's ratings on those items is used to generate predictions for the target user. Pearson Correlations and Cosine Similarity are two fundamental methods for measuring the similarity between users or items. Their basic idea is that, two users are similar if they have similar ratings on their commonly rated items.

IV. PROPOSED ALGORITHM

Input: Search item and request for recommendation. Output: Show the results of searched items and recommend web url's.

- Step 2: Search for the item
- **Step 3**: Show results of searched items
- Step 4: Request for recommendation

Step 5: Recommended web url's based on user's history

We proposed a system where user can search for web services such as image search, web search, video search, news search and so on. User will get the results of this entire search based on user's location. Users have to provide the location and the search item and then user will get the result which is according to user's location. As user is searching for various items, history of user will be maintained by the system. All user search items with its date will be saved to user's history. The proposed system will recommend web url's to the user based on users search history. The system will recommend the most visited url to the user according to his/her history.

We propose a location-aware personalized CF method for web service recommendation. The proposed method is called as personalized because each user have to register himself/herself to the system, the by login to the system user can use the system. Each user's account, history and recommendation are personalized by the system.

V. RESULTS

Web in order to demonstrate the complete process.

The first screen after starting the system shown to the user is display below in the screenshots. It is the home screen of the project from where user can select for user login or signup.

Figure 5.1: Home page of personalized web for web service recommendation

After this user can login or register. If the user is already registered then user can login by providing user id and password. If the user is not registered then user has to register first by filling the details.

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 5, May 2016

If the user is already registered then user can login by providing user id and password. If user successfully registered and login then following screen will appear.

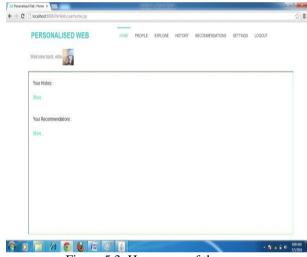


Figure 5.3: Homepage of the user

Now, after successfully login to the system user have various choices. User can select from the given choices like user can update profile, search for items, view recommendations, view history, change setting etc.

If user wants to update the profile then user can update by providing the details. Following screen will appear if user wants to update profile.

Figure 5.4: Profile update

If user wants to explore search i.e. if user wants to search then user can do it by selecting explore. After selecting explore, user can do web search, news search, image search etc. user can also provide location to get more accurate results. User has to insert search term for what user wants the information. When user search for item following screen will appear.

onalized Web: Home 🗶 📃						00
C Docalhost 8888/PerWeb/userexplore1.jsp						
PERSONALISED WEB	HOME PROFIL	e explore histor	Y RECOMMENDATIONS	SETTINGS	LOGOUT	
Welcome back, vijey						
Search Results for hvpm Location	in					
Computech Sales & Services, HVPBI, Amrava http://www.hvpm.org/	6					
HVPM had signed MoU with the following two inst Park Gerley Denmark 2	tutions during the year 201	3. 1. Gerlev Physical Educi	ition Academy and Play			
HVPM COET						
http:/http://www.index.php The college of engineering and technology was en University Amravati.	tablished in the year 2002-	2003 and is Affiliated to Se	nt Gadgebaba Armavati			
Top 24 Hypm profiles LinkedIn						
https://www.linkedin.com/title/hypm Here are the top 24 Hypm profiles on Linkedin. Gi	t all the articles, experts, jo	bs, and insights you need.				
HVPIII COET Alumni Portal						
http://hvpmcoetalumni.com/						
Shree Haruman Vyayam Prasarak Mandals' Coll						

Figure 5.5: Search results

As user search for various web services like web search, image search, book search etc. all the data whatever user search is saved as user's history .User's all data like what user had searched, when it is searched is saved as user's history. So that whenever user wants to view history it is easily available. Following screen shows the history of user.

Dicalhost 8888; PerWeb; luserhistory Ljsp						1
PERSONALISED WEB HONE PROFILE	EXPLORE	HISTORY	RECONNENDATIONS	SETTINGS	LOGOUT	
Welcome back, vijay						
Your Search History for : HVPM Search Courts : 135						
Select Searched Item books 💽 select						
Web address			Date of Sea	arch		
http://www.hupm.org/			12/4/2016			
http://hvpmcoetalumni.com/			12/4/2016			
https://www.linkedin.com/title/hypm			12/4/2016			
http://hvpmcoet.in/hvpmindex.php			12/4/2016			
http://hvpmcoet.in/home.html			12/4/2016			
http://www.acronymfinder.com/HVPM.html			12/4/2016			
htp://acronyms.thefreedictionary.com/HVPM			12/4/2016			
htp://hvpm.com/			12/4/2016			
http://acronyms.thefreedictionary.com/Hanuman+Vyayam+Prasarak+Mandal			12/4/2016			
http://www.hvpm.org/Activities/SummerCourses.htm			12/4/2016			
htp://wpn.gov.in/wps/wcm/connect/hvpn/home			12/4/2016			
http://padast.hvpm.org/index.htm			12/4/2016			
			12/4/2016			
https://www.allacronyms.com/HVPM			12/4/2016			
https://www.allacronyms.com/HVPM http://www.hipm.com.au/						
https://www.allacronyms.com/HVPM			12/4/2016			
htps://www.alaconyms.com/HVPM htgo.lwww.hupm.com.au/ htps:llen.wikipedia.org/lwiki.Hanuman_Vyayam_Plasarak_Mandal htgo:lhoopermuseum.earthsci.carleton.ca/			12/4/2016 12/4/2016			
https://www.allacronyms.com/HVPM http://www.hupm.com.au/ https://en.wikipedia.org/wiki/Hanuman_Vyayam_Prasarak_Mandal						

Figure 5.6: User's history

If user wants recommendations for different web services then user has to request for web services then user gets various recommendations from which user can select according to their choice.

IJARCCE

International Journal of Advanced Research in Computer and Communication Engineering Vol. 5, Issue 5, May 2016

VI. CONCLUSION

With the increase in the number of web services, developers are facing difficulties in finding appropriate services which fit their requirements. In order to make the developers work easy, we have implemented recommender system. In this project, we are trying to give recommendations to users based on historical location information of the user, through which the user can select most visited links using services. As the existing approaches lack location based recommendations, we have overcome this in our project.

Our system will provide facility to search for the item by providing search keyword and location and user will get the searched results as per the location. With the search user history is also saved as per the user's search. With the H.V.P.M's college of Engineering and Technology, help of location and user's history user get its most visited urls as recommendation.

ACKNOWLEDGMENT

My thanks to the Guide, Prof. R.R.Shelke, Head of Department Dr. A. B. Raut and Principal Dr.A.B.Marathe, who provided me constructive and positive feedback during the preparation of this paper.

REFERENCES

- [1] L.-J. Zhang, J. Zhang, and H. Cai, "Services computing", Springer and Tsinghua University Press, 2007.
- T. Yu, Y. Zhang, and K.-J. Lin, "Efficient algorithms for web [2] services selection with end-to-end qos constraints," ACM Transactions on Web, 1(1):6, 2007.
- L. Shao, J. Zhang, Y. Wei, J. Zhao, B. Xie, and H. Mei, [3] "Personalized QoS prediction for Web services via collaborative filtering," Proc. IEEE International Conference on Web Services (ICWS 07), 2007, pp. 439-446.
- Z. Zheng, H. Ma, M.R. Lyu, and I.King, "WSRec: a collaborative [4] filtering based web service recommendation system," Proc. IEEE International Conference on Web Services (ICWS 09), 2009, pp. 437-444.

- [5] X. Chen, X. Liu, Z. Huang, and H. Sun, "RegionKNN: a scalable hybrid collaborative filtering algorithm for personalized Web service recommendation,"Proc. IEEE International Conference on Web Services (ICWS 10), 2010, pp. 9-16.
- E. Rich, "User modeling via stereotypes," Cognitive Science, [6] Vol.3, No.4, 1979, pp. 329-354.
- G. Linden, B. Smith, and J. York, "Amazon.com recommendations: [7] item-to-item collaborative filtering," IEEE Internet Computing, 2003, pp. 76 - 80.
- J. S. Breese, D. Heckerman, and C. Kadie, "Empirical analysis of [8] predictive algorithms for collaborative filtering," Proc. 14th Conference on Uncertainty in Artificial Intelligence (UAI 98), 1998,pp. 43-52.
- [9] Y. Jiang, J. Liu, M. Tang, and X. F. Liu, "An effective Web service recommendation method based on personalized collaborative filtering," Proc. IEEE International Conference on Web Services (ICWS 11), 2011, pp. 211 - 218.
- [10] L. Zhang, B. Zhang, Y. Liu, Y. Gao, Z. Zhu, "A Web service QoS prediction approach based on collaborative filtering," Proc. IEEE Asia-Pacific Services Computing Conference, 2010, pp.725-731.
- [11] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl, "Grouplens: An open architecture for collaborative filtering of net news." Proc. ACM Conference on Computer Supported Cooperative Work (CSCW 94), 1994, pp.175-186.
- [12] R. R. Shelke, Dr. R. V. Dharaskar, Dr. V. M. Thakare, "Data Mining For Mobile Devices Using Web Services", International Conference on Industrial automation And Computing (ICIAC - 12th & 13th April 2014), Jhulelal Institute of Technology, Nagpur.
- [13] R. R. Shelke , Dr. V. M. Thakare, Dr. R. V. Dharaskar, "Study of Data Mining Approach for Mobile Computing Environment", International Journal on Computer Science and Engineering (IJCSE), ISSN: 0975-3397, Vol. 4, 12 Dec 2012, pp.1920-1923

BIOGRAPHIES

Ekta K. Chainani is currently pursuing Master's Degree in Computer Science and Engineering from H.V.P.M's College of Engineering And Technology, Amravati. She received the B.E. degree in Computer Science and Engineering from H.V.P.M's College Of Engineering And Technology, Amravati in 2014.

Prof. Rajeshri R. Shelke is an Associate Professor at Amravati. She received the B.E. and M.E degree in Computer Science. Her field of specialization is Data Mining. She is currently pursuing PHD and working as associate professor.